Title: | Create Datasets with Hidden Images in Residual Plots |
---|---|
Description: | Implements the "Residual (Sur)Realism" algorithm described by Stefanski (2007) <doi:10.1198/000313007X190079> to generate datasets that reveal hidden images or messages in their residual plots. It offers both predefined datasets and tools to embed custom text or images into residual structures. Allowing users to create intriguing visual demonstrations for teaching model diagnostics. |
Authors: | James Joseph Balamuta [aut, cre, cph] |
Maintainer: | James Joseph Balamuta <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.0.1.9000 |
Built: | 2024-11-13 02:42:53 UTC |
Source: | https://github.com/coatless-rpkg/surreal |
This function transforms the input data by adding points around the original data to create a frame. It uses an optimization process to find the best alpha parameter for point distribution, which helps in making the fitted values and residuals orthogonal.
border_augmentation(x, y, n_add_points = 40, verbose = FALSE)
border_augmentation(x, y, n_add_points = 40, verbose = FALSE)
x |
Numeric vector of x coordinates. |
y |
Numeric vector of y coordinates. |
n_add_points |
Integer. Number of points to add on each side of the frame. Default is |
verbose |
Logical. If |
A matrix with two columns representing the transformed x
and y
coordinates.
# Simulate data x <- rnorm(100) y <- rnorm(100) # Append border to data transformed_data <- border_augmentation(x, y) # Modify par settings for plotting side-by-side oldpar <- par(mfrow = c(1, 2)) # Graph original and transformed data plot(x, y, pch = 16, main = "Original data") plot( transformed_data[, 1], transformed_data[, 2], pch = 16, main = "Transformed data", xlab = 'x', ylab = 'y' ) # Restore original par settings par(oldpar)
# Simulate data x <- rnorm(100) y <- rnorm(100) # Append border to data transformed_data <- border_augmentation(x, y) # Modify par settings for plotting side-by-side oldpar <- par(mfrow = c(1, 2)) # Graph original and transformed data plot(x, y, pch = 16, main = "Original data") plot( transformed_data[, 1], transformed_data[, 2], pch = 16, main = "Transformed data", xlab = 'x', ylab = 'y' ) # Restore original par settings par(oldpar)
Data set containing a hidden image of a Jack-o'-Lantern lurking in the residual plot of a full model being fit.
jackolantern_surreal_data
jackolantern_surreal_data
A data frame with 5,395 observations and 7 variables.
y
: Response variable
x1
: Predictor variable 1
x2
: Predictor variable 2
x3
: Predictor variable 3
x4
: Predictor variable 4
x5
: Predictor variable 5
x6
: Predictor variable 6
Stefansk, L.A. (2013). Hidden Images in the Helen Barton Lecture Series. Retrieved from https://www4.stat.ncsu.edu/~stefansk/NSF_Supported/Hidden_Images/UNCG_Helen_Barton_Lecture_Nov_2013/pumpkin_1_data_yx1x6.txt
# Load the Jack-o'-Lantern data data <- jackolantern_surreal_data # Fit a linear model to the surreal Jack-o'-Lantern data model <- lm(y ~ ., data = data) # Plot the residuals to reveal the hidden image plot(model$fitted, model$resid, type = "n", main = "Residual plot from transformed data") points(model$fitted, model$resid, pch = 16)
# Load the Jack-o'-Lantern data data <- jackolantern_surreal_data # Fit a linear model to the surreal Jack-o'-Lantern data model <- lm(y ~ ., data = data) # Plot the residuals to reveal the hidden image plot(model$fitted, model$resid, type = "n", main = "Residual plot from transformed data") points(model$fitted, model$resid, pch = 16)
2D data set with the shape of the R Logo in x and y coordinate pairings.
r_logo_image_data
r_logo_image_data
A data frame with 2,000 observations and 2 variables describing the x and y coordinates of the R logo.
Staudenmayer, J. (2007). Hidden Images in R. Retrieved from https://www4.stat.ncsu.edu/~stefansk/NSF_Supported/Hidden_Images/000_R_Programs/John_Staudenmayer/logo.txt
# Load the R logo data data("r_logo_image_data", package = "surreal") # Plot the R logo plot(r_logo_image_data$x, r_logo_image_data$y, pch = 16, main = "R Logo", xlab = '', ylab = '')
# Load the R logo data data("r_logo_image_data", package = "surreal") # Plot the R logo plot(r_logo_image_data$x, r_logo_image_data$y, pch = 16, main = "R Logo", xlab = '', ylab = '')
This function implements the Residual (Sur)Realism algorithm as described by Leonard A. Stefanski (2007). It finds a matrix X and vector y such that the fitted values and residuals of lm(y ~ X) are similar to the inputs y_hat and R_0.
surreal( data, y_hat = data[, 1], R_0 = data[, 2], R_squared = 0.3, p = 5, n_add_points = 40, max_iter = 100, tolerance = 0.01, verbose = FALSE )
surreal( data, y_hat = data[, 1], R_0 = data[, 2], R_squared = 0.3, p = 5, n_add_points = 40, max_iter = 100, tolerance = 0.01, verbose = FALSE )
data |
A data frame or matrix with two columns representing the |
y_hat |
Numeric vector of desired fitted values (only used if |
R_0 |
Numeric vector of desired residuals (only used if |
R_squared |
Numeric. Desired R-squared value. Default is 0.3. |
p |
Integer. Desired number of columns for matrix X. Default is 5. |
n_add_points |
Integer. Number of points to add in border transformation. Default is 40. |
max_iter |
Integer. Maximum number of iterations for convergence. Default is 100. |
tolerance |
Numeric. Criteria for detecting convergence and stopping optimization early. Default is 0.01. |
verbose |
Logical. If TRUE, prints progress information. Default is FALSE. |
To disable the border augmentation, set n_add_points = 0
.
A data frame containing the generated X matrix and y vector.
Stefanski, L. A. (2007). Residual (Sur)Realism. The American Statistician, 61(2), 163-177.
# Generate a 2D data set data <- cbind(y_hat = rnorm(100), R_0 = rnorm(100)) # Display original data plot(data, pch = 16, main = "Original data") # Apply the surreal method result <- surreal(data) # View the expanded data after transformation pairs(y ~ ., data = result, main = "Data after transformation") # Fit a linear model to the transformed data model <- lm(y ~ ., data = result) # Plot the residuals plot(model$fitted, model$resid, type = "n", main = "Residual plot from transformed data") points(model$fitted, model$resid, pch = 16)
# Generate a 2D data set data <- cbind(y_hat = rnorm(100), R_0 = rnorm(100)) # Display original data plot(data, pch = 16, main = "Original data") # Apply the surreal method result <- surreal(data) # View the expanded data after transformation pairs(y ~ ., data = result, main = "Data after transformation") # Fit a linear model to the transformed data model <- lm(y ~ ., data = result) # Plot the residuals plot(model$fitted, model$resid, type = "n", main = "Residual plot from transformed data") points(model$fitted, model$resid, pch = 16)
This function applies the surreal method to a text string. It first creates a temporary plot with the text, processes the image, and then applies the surreal method to the data.
surreal_text( text = "hello world", cex = 4, R_squared = 0.3, p = 5, n_add_points = 40, max_iter = 100, tolerance = 0.01, verbose = FALSE )
surreal_text( text = "hello world", cex = 4, R_squared = 0.3, p = 5, n_add_points = 40, max_iter = 100, tolerance = 0.01, verbose = FALSE )
text |
Character. A plain text message to be plotted. Default is "hello world". |
cex |
Numeric. A value specifying the relative size of the text. Default is 4. |
R_squared |
Numeric. Desired R-squared value. Default is 0.3. |
p |
Integer. Desired number of columns for matrix X. Default is 5. |
n_add_points |
Integer. Number of points to add in border transformation. Default is 40. |
max_iter |
Integer. Maximum number of iterations for convergence. Default is 100. |
tolerance |
Numeric. Criteria for detecting convergence and stopping optimization early. Default is 0.01. |
verbose |
Logical. If TRUE, prints progress information. Default is FALSE. |
A data.frame containing the results of the surreal method application.
surreal()
for details on the surreal method parameters.
# Create a surreal plot of the text "R is fun" appearing on one line r_is_fun_result <- surreal_text("R is fun", verbose = TRUE) # Create a surreal plot of the text "Statistics Rocks" by using an escape # character to create a second line between "Statistics" and "Rocks" stat_rocks_result <- surreal_text("Statistics\nRocks", verbose = TRUE)
# Create a surreal plot of the text "R is fun" appearing on one line r_is_fun_result <- surreal_text("R is fun", verbose = TRUE) # Create a surreal plot of the text "Statistics Rocks" by using an escape # character to create a second line between "Statistics" and "Rocks" stat_rocks_result <- surreal_text("Statistics\nRocks", verbose = TRUE)